skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xiaogang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Suture zones located across the Tibetan region clearly demarcate the rift-and-drift and continental accretion history of the region. However, the intraplate responses to these marginal plate-tectonic events are rarely quantified. Our understanding of the Paleo-Tethyan orogenic system, which involved ocean opening and closing events to grow the central Asian continent, depends on the tectonic architecture and histories of major late Paleozoic−early Mesozoic orogenic belts. These opening and collision events were associated with coupled intracontinental deformation, which has been difficult to resolve due to subsequent overprinting deformation. The late Paleozoic−early Mesozoic Zongwulong Shan−Qinghai Nanshan belt in northern Tibet separates the Qilian and North Qaidam regions and is composed of Carboniferous−Triassic sedimentary materials and mantle-derived magmatic rocks. The tectonic setting and evolutional history of this belt provide important insight into the paleogeographic and tectonic relationships of the Paleo-Tethyan orogenic system located ∼200 km to the south. In this study, we integrated new and previous geological observations, detailed structural mapping, and zircon U-Pb geochronology data from the Zongwulong Shan−Qinghai Nanshan to document a complete tectonic inversion cycle from intraplate rifting to intracontinental shortening associated with the opening and closing of the Paleo-Tethyan Ocean. Carboniferous−Permian strata in the Zongwulong Shan were deposited in an intracontinental rift basin and sourced from both the north and the south. At the end of the Early−Middle Triassic, foreland molasse strata were deposited in the southern part of the Zongwulong Shan during tectonic inversion in the western part of the tectonic belt following the onset of regional contraction deformation. The Zongwulong Shan−Qinghai Nanshan system has experienced polyphase deformation since the late Paleozoic, including: (1) early Carboniferous intracontinental extension and (2) Early−Middle Triassic tectonic inversion involving reactivation of older normal faults as thrusts and folding of pre- and synrift strata. We interpret that the Zongwulong Shan−Qinghai Nanshan initiated as a Carboniferous−Early Triassic intracontinental rift basin related to the opening of the Paleo-Tethyan Ocean to the south, and it was then inverted during the Early−Middle Triassic closing of the Paleo-Tethyan Ocean. This work emphasizes that pre-Cenozoic intraplate structures related to the opening and closing of ocean basins in the Tethyan realm may be underappreciated across Tibet. 
    more » « less
  2. Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services. 
    more » « less